

AFRL-IF-RS-TR-2003-23
Final Technical Report
February 2003

EPIQ – A META-COMPUTING FRAMEWORK FOR
SCALABLE, RESPONSIVE AND
RECONFIGURABLE END-TO-END RESOURCE
MANAGEMENT, AND AGILE OBJECTS:
MIDDLEWARE FOR SURVIVABLE
INFORMATION SYSTEMS

University of Illinois at Urbana-Champaign

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL-IF-RS-TR-2003-23 has been reviewed and is approved for publication.

APPROVED:
 EDWARD L. DEPALMA
 Project Engineer

 FOR THE DIRECTOR:
 JAMES W. CUSACK, Chief
 Information Systems Division
 Information Directorate

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 074-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
 FEBRUARY 2003

3. REPORT TYPE AND DATES COVERED
Final Feb 97 – May 02

4. TITLE AND SUBTITLE
EPIQ – A META-COMPUTING FRAMEWORK FOR SCALABLE, RESPONSIVE AND
RECONFIGURABLE END-TO-END RESOURCE MANAGEMENT, AND AGILE
OBJECTS: MIDDLEWARE FOR SURVIVABLE INFORMATION SYSTEMS

6. AUTHOR(S)
Klara Nahrstedt

5. FUNDING NUMBERS
C - F30602-97-2-0121
PE - 62301E
PR - E524
TA - 01
WU - 01

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Illinois
Department of Computer Science
1304 West Springfield Avenue
Urbana Illinois 61801

8. PERFORMING ORGANIZATION
 REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Air Force Research Laboratory/IFSF
525 Brooks Road
Rome New York 13441-4505

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2003-23

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Edward L. DePalma/IFSF/(315) 330-3069/ Edward.DePalma@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
The objective of the Quorum Program was to understand the basic principle and algorithms of middleware systems for
QoS-aware and survivable information systems. The EPIQ project aimed to develop a meta-computing framework for
scalable, responsive, and reconfigurable end-to-end resource management. This meta-computing framework develops
end-to-end QoS and resource management strategies that can be customized and integrated to provide guaranteed
services of negotiated quality to time-critical C3I applications. Specifically, the framework provides end-to-end QoS and
resource management to flexible applications and enables applications to adapt their quality if dynamic changes occur
in requirements, demand on resources, and availability of resources. EPIQ multi-dimensional QoS and resource
management mechanisms are application-independent, but permit the integration with application-specific and user-
oriented mechanisms, and give the user a crucial control in QoS, service and resource allocation adaptation, graceful
degradation and recovery. The QoS management and resource management framework is further expanded through
off-line QoS programming and compilation environments to allow easy development of flexible multimedia applications
within our framework. The framework validation is done through an open real-time run-time environment that provides
end-to-end real-time performance computing and communication support for hard-real-time applications as well as end-
to-end soft performance guarantees for soft real-time and flexible applications.

15. NUMBER OF PAGES
30

14. SUBJECT TERMS
Resource Management, Quality of Service, QoS, Middleware

16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

i

Table of Contents

SUMMARY ... 1

INTRODUCTION... 1

METHODOLOGY ... 2

ASSUMPTIONS.. 2

PROCEDURES... 3
END-TO-END QOS MANAGEMENT ... 4

QoS/Resource Model .. 4
QoS Adaptation Model.. 5
End-to-End Protocols and Services .. 5

QOS-AWARE RESOURCE MANAGEMENT.. 6
QOS NETWORK MANAGEMENT ... 8

RESULTS AND DISCUSSIONS... 11
END-TO-END QOS MANAGEMENT ... 11
QOS-AWARE RESOURCE MANAGEMENT.. 13
QOS NETWORK MANAGEMENT ... 14

CONCLUSION ... 15
ACCOMPLISHMENTS... 15
EDUCATIONAL IMPACT .. 17
TECHNOLOGY TRANSITION .. 17

APPENDIX A.. 18

BIBLIOGRAPHY... 18

LIST(S) OF SYMBOLS, ABBREVIATIONS AND ACRONYMS............................ 25

ii

List of Figures

FIGURE 1: EPIQ META-COMPUTING FRAMEWORK .. 3
FIGURE 2: DISTRIBUTED SYSTEM OF HETEROGENEOUS, DEPENDENT APPLICATIONS

MODELED AS PIPELINED TASKS... 4
FIGURE 3: INPUT AND OUTPUT QOS FOR EACH TASK T... 5
FIGURE 4: CONTROL-BASED QOS ADAPTATION MODEL.. 5
FIGURE 5: OPEN REAL-TIME SYSTEMS .. 7
FIGURE 6: EPIQ MIDDLEWARE IN ACTION RUNNING VISUAL TRACKING.......................... 12
FIGURE 7: PERFORMANCE COMPARISON (FEASIBLE SCHEDULE SUCCESS RATE) BETWEEN

EPIQ OPEN SYSTEM AND A CLOSED SYSTEM. ... 14

1

Summary

The EPIQ project developed a Quality of Service (QoS) aware middleware and resource
management framework

(a) to allow for development and experimentation with novel algorithms,
methods, protocols, services, and applications

(b) to understand scalability, responsiveness, adaptability and reconfigurability
within an end-to-end QoS and resource management

(c) to validate important approaches for middleware which will be used in
survivable information systems.

The report discusses three important pieces of EPIQ project:

(1) the end-to-end QoS management approaches
(2) resource management approaches
(3) QoS network management approaches

The report presents validation of our approaches through implementations and
simulations such as the implementation of end-to-end QoS management for hard-real-
time applications, control-based algorithms for Agilos adaptive middleware systems,
open system integration of middleware and resource management services to allow co-
existence of hard-real-time and soft-real-time applications, and others.

Introduction

The objective of the Quorum Program was to understand the basic principle and
algorithms of middleware systems for QoS-aware and survivable information systems.
Our EPIQ project aimed to develop a meta-computing framework for scalable,
responsive, and reconfigurable end-to-end resource management. As this report shows,
we have achieved a large range of novel solutions, very much applicable to middleware
systems and their underlying end-system and network resource management for C3I
applications.

Our meta-computing framework develops end-to-end QoS and resource management
strategies that can be customized and integrated to provide guaranteed services of
negotiated quality to time-critical C3I applications. Specifically, the framework provides
end-to-end QoS and resource management to flexible applications and enables
applications to adapt their quality if dynamic changes occur in (a) requirements, (b)
demand on resources, and (c) availability of resources. EPIQ multi-dimensional QoS and
resource management mechanisms are application-independent, but permit the
integration with application-specific and user-oriented mechanisms, and give user a
crucial control in QoS, service and resource allocation adaptation, graceful degradation
and recovery. The QoS management and resource management framework is further
expanded through off-line QoS programming and compilation environments to allow
easy development of flexible multimedia applications within our framework. The
framework validation is done through an open real-time run-time environment that

2

provides end-to-end real-time performance computing and communication support for
hard-real-time applications as well as end-to-end soft performance guarantees for soft
real-time and flexible applications.

In summary, the technical objectives of our EPIQ project are: (1) development of
application independent QoS and resource management, (2) consideration of QoS
dependency among components, and (3) support of end-to-end QoS guarantees which
allowing QoS of system components to vary dynamically.

The outline of the report is as follows: In Methodology section we will discuss the top-
down methodology approach to our result presentation and evaluation. The Assumption
section presents assumptions for our meta-computing framework. In the Procedures
section we will describe algorithms, protocols and services within the end-to-end QoS
and resource management. The Results and Discussion section shows the implementation
and validation of our EPIQ algorithms. The Conclusion section high-lights the most
important accomplishments, the educational impact and technology transfer. In Appendix
A, we outline changes in personal and contributions of the individual PIs.

Methodology

The report will use the top-down methodology, presenting three important pieces of the
EPIQ work, which were done during the funding period of 1997-2002: (a) end-to-end
QoS management, (2) resource management, and (c) QoS network management. The top
layer of our EPIQ framework consists of the end-to-end QoS management, embedded
within a middleware system. Here we have researched negotiation protocols, adaptive
algorithms, QoS compilation, user-level and application-specific mechanisms to control
and gracefully adapt QoS, and their implementations. The next layer below the
middleware system is the QoS-aware resource management. In this domain we have
obtained results in the area of scheduling approaches for hard-real-time as well as soft-
real-time applications, and their validation through implementation and experimentation
within and on top of Windows NT 4.0 and Windows 2000. The last layer that we will
present is the QoS networking management, including high-performance predictable
networking software as well as QoS routing results.

Assumptions

In our meta-computing framework we make several assumptions to focus the research
and receive good understanding for development of end-to-end QoS and resource
management. The assumptions are done in the domain of applications, resources and
implementation. In the application domain we assume the class of multimedia
applications for soft-real-time applications such as the distributed visual tracking
application and the video-on-demand application, and periodic class of applications for
hard-real-time applications such as the inverted pendulum control application. In the
resource management domain we are considering the CPU and network resources only.
We are considering neither memory, nor disk resources in our QoS-aware resource
management. In the implementation domain we assume the Windows NT 4.0, Windows

3

2000 and Linux operating systems for hard-real-time and soft-real-time multimedia
applications, Myrinet/ATM hybrid network infrastructure for high-performance
predictable networking of distributed hard-real-time applications, and 100 Mbps Ethernet
with TCP/IP protocol stack for adaptive distributed multimedia applications.

Procedures

EPIQ QoS and resource management architecture [Hull97], as shown in Figure 1,
provides the interfaces, mechanisms and protocols needed to support QoS versus
time/resource tradeoffs for flexible tasks in diverse application domains (see Figure 2).

Figure 1: EPIQ Meta-Computing Framework

The architecture is built on a new QoS/resource model [Liu97] as shown in Figure 3. The
model differs from existing models in that it captures explicitly the dependency between
input QoS, output QoS and resources of dependent system components (i.e., the
dependency of output quality of each system component is not only on the resources
available to it to produce the output but also on the quality of its input). The issues taken
into account include how to support application-specific QoS management policies
within a general, application-domain independent framework, how to maintain the overall
service quality of an application system while allowing variations in the qualities of
services produced by its components, and how to provide users with control in QoS
tradeoffs.

QoS Resource Manager for
CPU

QoS Resource Manager for
Networks

 QoS Negotiator

Adapter for Network

Application
1

Reso
urce
Man
age
ment

M
i
d
d
l
e
w
a

QoS Coordinator/
Adaptor

QoS
Information

Adapter for

Application
2

Application
3

Application
 4

A
p
p
.

^*A*tk*t*t*t J1 4* 4* *t *^ **> •
h^*At ht it 41 i*t i*t i^ A''
S*H*iAi 4i It f1 {t 1*1 if*! O 'J
HWlr^ I ^'1 f;i f/i ^1 ^1 it*! o 'j
|»jAiiii'iy;iii'iii'ii?i^i J

f -C. -C. •£ < < < < <'< »
f. f. -C. < < < -f, < < <'•!
JF,j^,jt. * < < rf-, w*. < ^J.»
^.f. jf-HT. < <.:.: Vv-<v>

4

End-to-End QoS Management

In the area of end-to-end QoS management we have developed a unique application
model as shown in Figure 2 that allowed us then to develop the QoS model and
individual services in the EPIQ meta-computing framework. We modeled each
application as pipelined tasks that have dependencies starting from sources S through
various tasks T to destinations U. This model allows us to decompose each application
and consider QoS issues at the task level.

Figure 2: Distributed System of Heterogeneous, Dependent Applications Modeled as Pipelined Tasks

QoS/Resource Model
This application model allowed us then to design a novel QoS/resource model per task
[Liu97, Hull97] as shown in Figure 3, where each task T gets as an input the input quality
q(i) and allocated resources R, and using input QoS and resources, it delivers output QoS
q(o). Having this model, we can then start to quantify and reason about end-to-end QoS
problems and control of QoS. This QoS/resource model allows us also to consider more
complex scenarios. For example, we can have a data stream with an input quality q(i) that
arrives at the tradeoff reconciliation component (e.g., transcoder) to transform and
partition data stream’s input quality q(i) into q’(i) and q’’(i) as the data with different
input qualities might be needed by two different tasks of a service. After processing of
each subtask, they both jointly create a joint output quality q(o). Other scenarios are
possible as well. Within the QoS/resource model, we have also investigated
representation of QoS parameters, considering single value, pair value representations as
well as reward profile representations.

S2

S1 U1

U2

S3

T4

U3

Decision
Support

Controller

Display
Manager

T3 T5

T6

T2

T1

Video
Camera

Frame
Digitizer

Network
Transmission

Visual Feature
Extraction

Object
Identification

■ ||hi.l Jlifcl^ ■■ l|h> mmimnmm- ■ '^t "T* *T«^ WT' JT'i,

, 44ivl h^i |'«4 |l4Wf4 ,'4i ,1^41^

5

Figure 3: Input and Output QoS for Each Task T

QoS Adaptation Model
Using the task model and the QoS/resource model, we have expanded the task model
towards adaptation behavior. We have developed a control-based task model, shown in
Figure 4, which consists of an application target task T with input quality q(i) at first,
monitoring task that monitors the application task T and its output quality q(o), and the
adaptation task that uses the monitored values and uses it to adapt in the feedback loop
the input quality q’(i) for the application target task T [Li98a, Li98b, Li00c].

Figure 4 shows two target tasks T1 and T2, each with individual adaptive control loop.
The loops are concatenated because the monitored output q(o) of T1 influences the input
quality q(i) of task T2, and feedback into the adaptive task for final determination of the
input quality of task T2. The control-based task model for QoS adaptation was further
expanded with fuzzy control model to include not only QoS parameters adaptation, but
also functional adaptation if data adaptation is not sufficient or possible due to scarce
resources [Li99a, Li99b, Li99c, Li00c].

Figure 4: Control-based QoS Adaptation Model

End-to-End Protocols and Services
All of these models were used to develop end-to-end run-time QoS management services
within the EPIQ meta-computing framework. Examples of these services are (1) the end-
to-end negotiation protocol, triggered by the QoS negotiator, (2) end-to-end QoS setup
with discovery and service composition protocols, (3) configuration management

Target Task
T1

Monitoring
Task

Adaptation
Task

R

X(R) q1(i)

q1’(i) q1(o)

X(R)

Target Task
T2

Monitoring
Task

Adaptation
Task

q2(i)

q2’(i) q2(o)

q1(o)
X(R)

Task T
Input Output QoS

R

q(i) q(o)

6

inside the QoS coordinator, (4) QoS adaptation services and protocols residing within a
QoS adaptor entity, (5) quality aware scalable service management, and others
[Hull98,Shankar99,Xu00a,Li00b, Li00c, Xu00b, Xu00c, Xu00d, Cui01, Wichadak01,
Nahrstedt01, Xu02a,Xu02b,Gu02b, Gu02c].

The EPIQ end-to-end QoS management and corresponding middleware system also
utilize a novel off-line support for QoS programming and compilation to allow
application developers to build easily flexible and QoS-aware applications [Gu00,
Nahrstedt00d, Wichadak01, Gu02a,Wichadak02]. Furthermore, the EPIQ QoS
management framework was extended to consider not only performance QoS metrics but
also security. Of special importance were issues such as (a) protection of QoS
parameters and values during QoS negotiation, (b) copyright protection of multimedia
data distributed within EPIQ’s framework, and (c) real-time encryption of multimedia
data. EPIQ’s framework allows us to analyze how these three security mechanisms
influence end-to-end performance QoS guarantees for flexible applications such as
multimedia [Talwar01a, Talwar01b, Prabhu02].

QoS-aware Resource Management

The EPIQ end-to-end resource management mechanisms are built on recent advances in
scheduling time-critical applications in open systems and synchronization of end-to-end
tasks. Hard real-time systems built on current technologies are closed systems. Whether
an application can meet its real-time requirements must be carefully considered. It can be
determined only by a global schedulability analysis, based on timing attributes of all tasks
in all combinations of applications that may run at the same time. The need for such
detailed information often forces all applications in the system to be developed together
and limits the configurability of the system. We have developed EPIQ open system
environment that is designed to allow individual real-time component applications to be
developed and validated independently as shown in Figure 5 [Deng97a, Deng97b,
Hull98, Deng98, Deng99a, Zhang99a, Zhang99b]. It permits hard real-time applications
to run on the same platform with soft-real-time and non-real-time applications. Any real-
time application has a simple, but accurate acceptance test and provides each accepted
real-time application with timing guarantees regardless the behaviors of other
applications in the system.

A key component of the open system is the two-level hierarchical scheduler. Each real-
time application is executed by a server. The CPU scheduler consists of an OS scheduler,
which maintains and schedules the servers, and server schedulers, each of which
schedules the threads/tasks in a hard-real-time application according to the scheduling
algorithm chosen for the application. The hierarchical scheduler is said to be correct if it
accepts the request of any application to execute in the real-time mode only when it can
guarantee the schedulability of the application and once it accepts the request, it never
violates its guarantee [Deng97a, Deng97b, Frei98, Gardner99].

Furthermore, the open system integrated the hierarchical CPU scheduling framework
with the hierarchical scheme for scheduling network traffic over Myrinet [Zhang99b,

7

Liu99a]. As the CPU scheduling scheme creates a slower virtual processor for each real-
time application running on the processor, the message scheduling scheme creates a
slower network for the application. At the lower level, the hierarchical message scheduler
uses the weighted round robin scheme to partition the network into slower virtual
networks for real-time applications running on the cluster. At the high-level, each high-
level scheduler uses an algorithm chosen by the application to schedule the periodic
messages of the application. We have evaluated four heuristic algorithms that were
designed to schedule periodic messages in bufferless switches according to the traditional
one-level scheme used in closed systems. Each of our high-level schedulers uses one of
these algorithms to schedule periodic messages in the application, serviced by the
scheduler. In order to determine their performance, when used in a hierarchical scheduler,
we simulated systems with various numbers of applications, distribution of processors
and network loads, etc. To our surprise, we found that the hierarchical scheme using any
of the heuristic algorithms at the high level outperforms significantly when compared
with the corresponding one-level scheme. A closer examination showed that this is due to
the fact that these heuristics usually perform better for small systems and simpler
applications and the hierarchical scheme in essence partitions a large system into many
smaller ones.

Figure 5: Open Real-Time Systems

Besides the hard-real-time scheduling results within the EPIQ open system environment,
we have also designed and evaluated a Dynamic Soft-Real-Time Scheduling
Framework (DSRT) for scheduling of soft real-time tasks [Viswan00, Yuan01, Yuan02,
Gupta02]. Where EPIQ open system environment experimented with kernel
implementation of a scheduling framework for hard real-time and non-hard-real-time

Non-Real-Time Real-Time Communication

OS

A C
budge
t

NT
Schedule Schedule

R

A

Schedule
EDF- Passiv

eServer

Read
y

USE

KERNE

FIF ED
F-

ML
F-

Low Level Network

A ANon-Real-Time

8

tasks, the DSRT environment experimented with user level implementation of a
scheduling framework for soft-real-time and non-real-time tasks. DSRT proved to be
very useful for multimedia task scheduling. The DSRT system introduced service classes
such as the Periodic Constant Processing Time (PCPT) class, Periodic Variable
Processing Time (PVPT) class, aperiodic class and event class, so that different flexible
applications can register with different scheduling class. To implement these classes,
DSRT utilized the priority switching mechanism to enforce soft reservation in each class.
The DSRT system provides different soft-reservations of CPU to meet soft-deadlines.
This scheduling service includes also additional services such as the monitoring and
probing service to extract CPU-related parameters for applications to make a reservation
with DSRT. Besides the soft-real-time applications, DSRT also allows to run best effort
non-real-time applications as it does not use all CPU bandwidth for soft-reservations. The
DSRT related services are especially useful for QoS translation between high level QoS
specification and system related QoS specifications. Currently, DSRT is being analyzed
for multimedia mobile nodes over wireless 802.11 networks to understand the relation
between CPU reservation, energy allocation and adaptive hardware [Yuan02].

QoS Network Management

In the area of QoS network management, we have investigated various avenues and
problems. Large piece of work within EPIQ meta-computing environment was done on
end-to-end QoS routing [Chen97a, Chen97b, Chen97c, Chen98a, Chen98b, Chen98c,
Chen98d, Chen98e, Chen98f, Chen99a, Chen99b, Lui00a, Lui02a, and Lui02b]. We have
investigated various algorithms and developed source routing as well as distributed and
hierarchical routing protocols to find a feasible and QoS acceptable path for end-to-end
QoS management. Generally, multi-constrained routing is difficult because different
constraints can conflict with each other. In particular, the delay-cost constrained routing
problem is NP complete. Our novel set of distributed QoS routing algorithms allows for
finding an optimized path which satisfies bandwidth, delay jitter and cost quality
parameters in polynomial time. Our algorithms are loop-free and utilize only local state
information. One class of algorithms is based on probing, the other class is based on
distributed recursive computation. Especially noticeable is our ticket-based distributed
QoS routing that uses a limited amount of tickets to find suitable routes. The algorithm is
very close to optimal algorithm, the flooding algorithm, when it comes to success rate to
find a QoS suitable route, and it is very close in performance to the optimal algorithm,
the Dijkstra shortest path algorithm, when it comes to the message overhead. Another
noticeable solution, we have developed, is the efficient topology aggregation
representation and algorithm, needed when each link carries bandwidth-delay QoS states
in large scale networks [Lui00b]. State aggregation is a problem in QoS routing because
we need to keep for each path extra QoS state information. Hence, aggregation schemes
must be integral part of the QoS network management. We have applied geometrical
representation to aggregate multiple QoS value points in a bandwidth-delay plane. Our
aggregated approach decreases the space requirements from O(N) to O(1). With
aggregation arises a problem of imprecision in QoS representation, and we have
developed imprecise network QoS model to work with this representation during QoS
routing as well. Our unicast QoS routing algorithms have been further expanded towards

9

QoS multicasting, providing novel algorithms to find QoS multicast trees for delay-
constrained least-cost QoS requirements [Chen00a].

Another large area of interest in the EPIQ network resource management was centered
around the design of a distributed open system architecture which enables hard real-
time applications to be developed and validated independent of each other and configured
dynamically to run on a cluster of machines. Especially, our research concentrated on
Control Area Networks (CAN) [Zhang99a, Zhang99b]. CAN is a high-integrity serial
data communications bus that is widely deployed in the area of industrial automation and
robotics for decentralized control of field devices. CAN uses the established method
known as CSMA/CD but with the enhanced capability of non-destructive bit-wise
arbitration to provide collision resolution. The real-time scheduling problem within CAN
means to assign identifier to messages with different timing characteristics. There exist
several approaches to solve the scheduling problem in CAN which support an event
driven communication model, namely the static priority mechanism (e.g., Rate
Monotonic Scheduling) and the dynamic priority mechanism (e.g., EDF Scheduling).
Both mechanisms are over constraining in a sense that all timing characteristics must be
known a priori. This is becoming increasingly difficult to comply with. As the control
applications become more and more complex, and application software is modularized, it
is unrealistic to assume that a developer has global knowledge of other applications that
will be run concurrently in the system while she designs and validates her application.
Moreover, modern distributed real-time systems usually require a certain level of
flexibility to accommodate on-line reconfiguration. These changes may include adding or
removing applications, or changing the timing parameters of existing message streams.
The open system architecture addresses these issues by providing isolation between real-
time applications and hence allowing them to be designed and validated independently.
This work proposed the use of sporadic servers to arbitrate and preserve bandwidth for
each node in CAN. Messages in the sporadic server are scheduled using the EDF
algorithm. Each sporadic server is associated with a budget and period. Every node
connected to the CAN bus keeps a table of all the real-time sporadic servers in the
system. Contention is resolved implicitly by scheduling the sporadic servers as periodic
messages using the EDF algorithm. Each node keeps two message queues for aperiodic
(with soft deadline) and non-real-time traffics respectively. Whenever a transmission slot
is not used by hard real-time messages, the nodes contend for channel access by encoding
a fixed priority level (using the rate monotonic algorithm) into the message identifier.
The winner node then transmits a message from the head of its aperiodic message queue.
When only non-real-time traffic is present, round-robin is used to facilitate fair channel
access. Simulation study has been done to show the proposed hierarchical scheduling
scheme allows higher network utilization as well as providing timing isolation among
real-time applications

We have also considered the high-performance predictable network software and
agile objects. The EPIQ networking software provides support for QoS management as
well as expands the utility of high-speed networks by improving usable bandwidth and
predictability of performance. This work is built on the novel software architecture of
Illinois Fast Messages (FM), which can deliver network link bandwidth to the application

10

for small packets, and the use of small packets in turn enables the system to provide
predictable performance. FM delivers latency of on the order of milliseconds and peak
bandwidth of approximately 76 Mbytes a second to applications. FM-QoS extends FM to
deliver predictable performance (e.g., deterministic latencies and guaranteed bandwidth)
for very high speed cluster interconnects [Connelly97]. It exploits a novel communication
architecture based on the network feedback in wormhole routed networks. Feedback is
used to enforce loose synchronization, which when combined with self-synchronizing
schedules, can avoid resource conflicts for network links and outputs. Elimination of such
conflicts leads to predictable communication performance. Key elements of the
architecture include feedback-based synchronization (FBS) of senders and a class of self-
synchronizing communication schedules for which FBS is effective. A Petri nets model is
used to precisely characterize the structure of self-synchronizing schedules and to analyze
the clock drifts that can be tolerated. This analysis indicates that our architecture can
share network resources with predictable performance at granularities of a few
microseconds, which is orders of magnitude better than previous software-based schemes
and comparable to hardware-intensive approaches such as virtual circuits (e.g., ATM).

The real-time scheduling framework from the EPIQ distributed open system environment
was further applied to IEEE 802.11 wireless network. Energy constraint has become an
important factor in the design of MAC protocols. This work addresses the issue of
providing deterministic timing guarantees in the wireless LAN while minimizing energy
consumption of the wireless nodes. We have designed a centralized energy efficient
algorithm, called Scheduled Contention Free Burst (S-CFB), which is built upon the
recently proposed Hybrid Coordination Function (HCF) in the IEEE 802.11 standard.
The key idea of this scheme is to bundle message transmissions into multiple contention
free bursts in order to reduce control overhead and allow wireless nodes to sleep
whenever possible. S-CFB exploits the flexibility provided by the HCF standard, and
combines the EDF and Weighted-Round-Robin algorithm to balance between power
consumption and bandwidth utilization, while still providing hard timing guarantee for
real-time messages. Our performance studies have shown that : 1) S-CFB meets the timing
requirement for real-time traffic; 2) allows wireless nodes to switch to idle state for a longer
period of time; and 3) reduces the number of control frames required to maintain contention free
transmission.

Moreover, at the end host, we have designed a generalized communication server to provide a
generic resource management mechanism [Zhang99b, Viswan00]. (A communication server was
proposed in the distributed open system environment to manage the real-time connections in the
open system. Messages generated by each application are scheduled and transferred as though
they are in a slower virtual network.) The objective is to provide a uniform mechanism for global
resource sharing among tasks in different applications with bounded priority inversion time. A
special server, called global resource server, is used to manage CPU budget in servicing tasks in
global critical section (i.e. tasks accessing a global resource). Whenever a task requests for a
global resource, the task is moved to the ready queue of the critical resource server. When the
task finishes its critical section, it will be moved back to the ready queue of its original
application server. The global resource server keeps track of CPU budget consumed by the task
and subtract it from the application server. The global resource server execute at the highest
priority of all the tasks blocked on the resource. The correctness of this mechanism has been
proved and a corresponding schedulability test provided.

11

Results and Discussions

The EPIQ project achieved a large set of implementations and experimentations. We will
enumerate some of them and refer to more details in publications, listed in the
bibliography.

End-to-End QoS Management
We have implemented several end-to-end QoS management middleware versions to test
the various approaches as they evolved over the duration of the funding:

1. Our first version of the end-to-end QoS management was implemented in Java.
It included end-to-end negotiation protocols, and the task and QoS/resource
models. Whereas the preliminary version was done to prove the feasibility and
practicality of our concepts, in the design of the next version we have paid special
attention to efficiency, flexibility and scalability [Shankar99].

2. Our second version of the end-to-end QoS management was implemented in
Java/C++/CORBA, validating the adaptive control-based task model as well as
fuzzy control to provide QoS guarantees to a distributed visual tracking
application. This middleware system was called Agilos and included QoS
negotiator, and QoS adapter [Li98c, Li98d, Li99b, Kalter00a, Li00c]. It also
relied on CORBA middleware services such as event service, trader service,
naming service and others. We have demonstrated the feasibility of this
middleware together with the open system resource management at the DARPA
meeting in Washington DC, 1999. The DARPA demonstration showed that using
the open system scheduling environment we could run a hard-real-time
application, the inverted pendulum, as well as the end-to-end QoS management
system Agilos with the adaptive visual tracking application. Figure 6shows the
QoS adaptation results of the flexible visual tracking application under network
bandwidth and CPU resource variability. The results show that if we want to
preserve the critical quality of the visual tracking application, the tracking
precision, then other quality parameters will suffer and need to be degraded such
as the frame size and/or frame rate.

 12

Figure 6: EPIQ Middleware In Action Running Visual Tracking

3. Our third version of the end-to-end QoS management system, called 2KQ+, was
implemented in Java/C++/CORBA and tested the service management services
and protocols such as QoS-aware discovery protocols to discover appropriate
services in the end-to-end path, and QoS-assured service composition for flexible
applications. This middleware system utilized the DSRT scheduling framework in
the underlying resource management as well as network service broker for
bandwidth management [Nahrstedt00d, Gu00, Cui01, Xu01, Wichadak01, Xu02a,
Wichadak02, Gupta02].

4. The end-to-end QoS management implementation, 2KQ+, was accompanied by
the implementation of tools to allow for QoS programming and compilation
[Gu00, Gu01a, Gu02a, Nahrstedt00, Wichadak01, Wichadak02]. We have
developed the tool, called QoS Talk, that represents a visual programming
environment for an application developer. The underlying language, into which
application’s visual graph is translated, is called HQML, and it belongs to the
XML language class. HQML representation allows the QoS Talk tool to check for
consistency of QoS specification. Another tool we have developed is called QoS
compiler that takes the high level application programming graph with QoS
specifications and translates it to system and resource specific representations.
QoS compiler takes sound HQML representations, as well as application
configurations from the Qos Talk and translated them into service component
graphs where each component is associated with system-related QoS parameters.
This middleware and their tools are currently part of the distributed operating

Adaptation Control: Frame Size Output Quality: Tracking Precision

Input Quality: Frame Rate Resource: Throughput

13

system Gaia that runs in our smart room spaces. The 2KQ+ services support
various multimedia services in the smart room environment.

5. As part of the 2KQ+ middleware, we have implemented security services such as
real-time encryption, authentication, and developed the concept of quality of
security [Talwar01a, Talwar02]. This middleware testbed allowed us to
investigate the tradeoffs between performance and security in mobile multimedia
applications such as mobile audio and video. We have tested standard
implementations such as DES and triple DES and their delay impact on
multimedia transmission. The results are encouraging as many implementations
are being done very efficiently.

QoS-aware Resource Management
We have implemented several versions of the resource management to support resource
scheduling for hard-real-time, soft-real-time and non-real-time applications.

1. We have implemented the open system on the Windows NT 4.0 platform as well
as on Linux. We have thoroughly tested and debugged our uniprocessor open
system prototype and tested it with the inverted pendulum application to
demonstrate its capability and performance. We have presented the EPIQ open
system architecture and prototype at Sony Distributed System Lab, HP Labs and
Microsoft for the purpose of technology transfer. The fact that our prototype on
Windows NT requires only 2172 additional lines of C code for both the kernel
extension and Real-Time API functions is a proof that the important open-system
capability can be easily obtained within the framework of any operating system. It
does not create any backward compatibility problem and leads to insignificant
amount of performance degradation [Deng97a, Deng97b, Deng98, Liu99a, and
Shih00].

2. We have implemented the dynamic soft-real-time scheduling (DSRT)
framework on Windows NT, 2000, Solaris and Linux platforms. We have tested
this framework with many different multimedia applications ranging from visual
tracking, video on demand, video-phone applications to mobile video
applications. We have also augmented DSRT and tested it on HP laptop under
Linux where the processor changes speeds depending on energy consumption
[Yuan01, Yuan02].

3. In our effort to enhance the suitability of Windows NT for hard-real-time
applications, we have implemented two tools. The first tool is a user-level set
priority function, implemented as a device driver, that does constant ration
mapping of user thread priorities chosen by the application to one of the 16 real-
time priority levels supported by Windows NT. The application calls this
function, rather than NT’s setThreadPriority() to set thread priority. We have also
implemented a library function that approximates the non-preemptive critical
section protocol. It can be used with mutexes and reader/write locks in Windows
NT to control priority inversion [Deng98, Shih00].

14

QoS Network Management
In the QoS network resource management, we have concentrated on different ways to
validate our results ranging from real implementation to simulation studies.

1. We have implemented the EPIQ open system where the CPU scheduling is
integrated with the communication server within the open environment. The
communication server uses Illinois Fast Messages on Myrinet to connect 4 PCs to
a cluster. Figure 7 shows performance comparison between open and closed
systems when using different scheduling algorithms [Zhang99a, Zhang99b].

Figure 7: Performance Comparison (Feasible Schedule Success Rate) between EPIQ Open System
and a Closed System.

2. We have implemented a simple version of the edge device on PCs to connect
ATM network cloud with the RSVP/IP enabled ISP (Internet Service Provider)
environment where our end-points are connected [Chawla99a, Chawla99b]. The
edge devices provide QoS bridge for heterogeneous networks. Specifically, we
have implemented QoS translations between RSVP flows and CRB traffic class
specifications, and end-to-end connection setup protocol which takes into account
that RSVP is receiver-oriented protocol and ATM uses a sender-oriented
signaling protocol. Moreover, we have conducted experiments between end-

EDF-
RR(Closed)

MLF-
RR(Closed)

EDF-
RR(Open)

MLF-
RR(Open)

15

points across laboratories. The results showed that the end-to-end establishment
protocol over heterogeneous networks works correctly and efficiently.
Furthermore, the video transmission when confirming to the negotiated and
established QoS contract performs well.

3. We have implemented a virtual network testbed on PCs under Windows NT.
Using this testbed we have implemented various QoS routing protocols such as
the source QoS routing, and several distributed QoS routings algorithms. We have
also simulated various QoS routing algorithms on different Internet topologies to
verify our algorithms [Lewites99].

4. We have developed the multi-network Fast Messages substrate and demonstrated
it over the Myrinet/ATM hybrid network infrastructure. FM-QoS is implemented
on Myricom’s Myrinet Network (a 1.2 Gbps cluser network). We have also
implemented a router (bridge) of FM which allows FM on Myrinet to be tunneled
through virtual circuits in an ATM network [Connelly97].

Conclusion
In conclusion we will summarize (a) our accomplishments through the entire EPIQ
project and highlight conceptual and experimental results of this metacomputing
framework, (b) the educational impact of the DARPA funding and (c) technology
transition efforts.

Accomplishments
1. We have designed and implemented a set of robust versions of end-to-end QoS

management systems for hard-real-time applications, soft-real-time applications
and non-real-time application. The QoS management systems are able to
accommodate a mixture of applications, and manage different dimensions and
measures of QoS, taking into account our new QoS/resource model.

2. We have successfully implemented and evaluated set of end-to-end exploration
protocols for QoS setup such as the end-to-end negotiation protocol, discovery
protocol, end-to-end reservation protocol. Using these protocols we are able to
establish an end-to-end connectivity with feasible quality levels at end-points for
our distributed applications.

3. We have successfully designed the adaptive QoS framework and validated it with
Agilos adaptive QoS middleware system and visual tracking application
implementations. This work received the IEEE Communications Society Leonard
Abraham Price, awarded in June 2000.

4. Based on Agilos, we have designed next version of end-to-end QoS middleware
system, 2KQ+, that allows hand-held devices and mobility. The middleware is
based on the middleware kernel, called SMART, which is designed as an onion. A
service kernel represents the core services, required at each device, and it is then
expanded through enhancement services, present at more computationally
powerful devices.

5. We have applied the early QoS/resource model and task model to QoS
specification and the component-based service model to allow for configurable
and exchangeable services. This work resulted in the development of the QoS

16

Talk programming environment for the 2KQ+ middleware system, QoS Compiler
and run-time multimedia service setup model.

6. We have enhanced 2KQ+ with dynamic end-to-end service configuration and
distribution capabilities. We have also added security considerations where access
to any multimedia service and middleware QoS service is authenticated and the
data are protected via real-time encryption.

7. We have successfully demonstrated integration of the EPIQ open system and the
Agilos adaptive QoS middleware.

8. We have successfully investigated the interrelation of the adaptive control
algorithms applied to the CPU adaptor and network bandwidth adaptor within the
Agilos adaptive QoS middleware.

9. We have expanded the Agilos adaptive QoS by introducing gateway capabilities
to provide load balancing, and functional adaptations such as service switching.
We have explored adaptive fuzzy control mechanisms and appropriate rules in
gateway middleware system to support multiple users and multiple video cameras
within the distributed visual tracking application that used Agilos.

10. We have developed EPIQ open system scheduling framework based on hierarchy.
11. We have thoroughly tested and debugged the EPIQ open environment, which is

implemented on the Windows NT platform. Its soundness was demonstrated with
the inverted pendulum controller.

12. The EPIQ open system was ported to Linux OS, Version 5.0.36. We have
implemented the rate monotonic real-time scheduling framework on this platform.

13. We have expanded the EPIQ open system environment on Linux with the QoS-
aware network service broker. The network service broker was designed to
decouple the bandwidth-scheduling problem from the CPU scheduling and hide
the networking details from the application. Through simulation studies we have
also showed that the hierarchical scheduling scheme, compared with one level
scheduling, allows higher network utilization and timing isolation among real-
time applications.

14. We have implemented the EPIQ distributed open system within the Myrinet
cluster PCs running Windows NT OS.

15. We have implemented DSRT scheduling framework on Windows NT and 2000,
and integrated it with 2KQ+ middleware system.

16. We have enhanced DSRT towards considerations of adaptive hardware. We can
currently support CPU-related quality requirements for adaptive multimedia
applications under adaptive CPU.

17. We have designed and tested via simulations and prototypes several important
QoS unicast routing algorithms: (a) ticket-based distributed routing, (b) source-
based QoS routing, (c) hierarchical QoS algorithms with efficient topology
aggregation algorithms.

18. We have completed extensive experiments with edge devices to interconnect
heterogeneous networks such as ATM, Myrinet and RSVP/IP to achieve QoS-
aware connectivity.

17

Educational Impact
This grant achieved not only incredible amount of research results, but it also had a
tremendous impact on education. It funded fully or partially 26 students during the
duration of the grant. From the set of DARPA funded students eight PhD students
finished with PhD (Z. Deng, A. Shankar, D. Hull, M. Gardner, S. Chen, B. Li, D. Xu.
K.S. Lui) and nine MS students finished with MS degrees. Many undergraduate students
benefited from the research experiences as well as they worked together with PhD or MS
students side by sides and helped with various experiments. The PhD student, B. Li,
received the IEEE Communications Society Leonard Abraham Price for control-based
QoS adaptation model. Two MS students, X. Gu and V. Talwar, received the best Master
Thesis Kuck Award, given by the Department of Computer Science at UIUC, for their
MS theses. The MS student, D. Gupta, received the highly competitive Siebel scholarship
for his achievements. Professor K. Nahrstedt received the Ralph and Catherine Fisher
Professorship in 2002. This professorship is given by the Engineering College at UIUC to
junior faculty members for their excellent research results.

Technology Transition
The Agilos adaptive QoS middleware system architecture and prototype were presented
to IBM and NASA Ames Research Lab for the purpose of technology transition. Agilos
and the distributed visual tracking application were installed in NASA AMES and
extensive wide-area experiments were conducted over NASA high-speed network testbed
[Li98c, Nahrstedt99].

The QoS programming environment and QoS compiler were presented at the Open
System Standard committee meeting and were received with great interest to consider
many concepts in their end-to-end solution. Furthermore, NASA is interested to test their
applications via our QoS programming environment and have it translated into system
specific representations via our QoS compiler.

The 2KQ+ middleware system, the QoS Talk and QoS compiler are part of the
distributed operating system, Gaia, that runs in smart rooms in the current Department of
Computer Science at UIUC. The EPIQ’s results represent the core of QoS support for this
operating system. The final goal is to run Gaia system in each conference/seminar room
within our new Siebel Center, the new Computer Science Building.

The EPIQ open system architecture and prototype were presented at Sony Distributed
Systems, HP Labs, and Microsoft for the purpose of technology transition. The EPIQ
open system kernel, the corresponding API code, and the embedded inverted pendulum
controller software were transferred to Microsoft [Liu99a].

The DSRT system was transferred to the ETL research laboratory, Tsukuba, Japan, to
support configurable OS platforms. Furthermore, many other research labs and
universities are using the DSRT system for multimedia scheduling as the system runs on
multiple platforms (Windows, Solaris, Linux) [Nahrstedt00b].

18

Appendix A

The credit for the overall EPIQ framework and research goals goes to all PIs and their
students. Professors J. Liu and K. Nahrstedt with their students worked jointly on the
QoS/resource model and its relation to the task model.

Professor J. Liu and her students worked on the (a) first version of the Java-based end-
to-end QoS management with end-to-end negotiation capabilities, (b) EPIQ open system
with the hierarchical scheduling framework, allowing to schedule mixture of hard-real-
time and non-hard-real-time applications, (c) EPIQ distributed open system with the
communication server, communication broker and scheduling algorithms for
communication scenarios, (d) CAN problems, and (e) scheduling problems in 802.11
networks. (Professor J. Liu moved from UIUC to Microsoft in 1999.)

Professor A. Chien and his students worked on the (a) Fast Messaging System, (b) on
FM-QoS framework over Myrinet, and (c) QoS-aware interconnectivity between Myrinet
and ATM. (Professor A. Chien moved from UIUC to UC San Diego in 1998.)

Professor K. Nahrstedt and her students worked on the (a) adaptive QoS model, based
on control theory and fuzzy control, (b) adaptive QoS middleware system, Agilos, and its
extensions towards CPU/bandwidth integration, gateway enhancement, and building of
an extensive visual tracking application to validate Agilos, (c) hybrid QoS middleware
system, 2KQ+, with support of soft-guarantees as well as QoS adaptation, advanced QoS
setup protocols, discovery protocols, end-to-end reservation, QoS adaptation, service
composition, and monitoring, (d) Dynamic Soft-Real-Time (DSRT) system for
scheduling of soft-real-time and non-real-time tasks, (e) QoS routing problems in the
unicast and multicast domain, (f) QoS-aware interconnectivity between ATM and
RSVP/IP networks, (g) QoS programming and QoS compilation for multimedia
applications, and (h) tradeoffs between performance and security QoS
metricsBibliography.

19

1997 Publications, Theses and Talks:
 [Lui97] J.W.S. Liu, K. Nahrstedt, D. Hull, S. Chen, B. Li, “EPIQ QoS Characterization”,
Draft Technical Report 1997, http://epic.cs.uiuc.edu
[Deng97a] Z. Deng, J.W.S. Liu, J. Sun, “A Scheme for Scheduling Hard Real-Time
Applications in Open System Environment”, 9th Euromicro Workshop on Real-Time
Systems, June 1997, pp. 191-199.
[Connelly97] K. Connelly, A. Chien, “FM-QoS: Real-Time Communication Using Self-
Synchronizing Schedules”, Supercomputing’97, November 1997.
[Nalini97] N. Venkatasubriamanian, K. Nahrstedt, “An integrated Metric for Video
QoS”, ACM Multimedia, 1997, Seattle, WA, pp. 371-381
[Chen97a] S. Chen, K. Nahrstedt, “Distributed QoS Routing”, Technical report,
UIUCDCS R-97-2017, CS Department, UIUC, October 1997.
[Chen97b] S. Chen, K. Nahrstedt, “Routing by Distributed Recursive Computation and
Information Reuse”, Technical report, UIUCDCS-R-97-2028, CS Department, UIUC,
October 1997.
[Hull97] D. Hull, A. Shankar, K. Nahrstedt, J. W. S. Liu, “An End-to-End QoS Model
and Management Architecture”, IEEE Workshop on Middleware for Distributed Real-
Time Systems, December 1997.
[Deng97b] Z. Deng, J.W.S. Liu, “Scheduling Hard-Real-Time Applications in Open
Environment”, IEEE Real-Time Systems Symposium, December 1997.
[Chen97c] S. Chen, K. Nahrstedt, “On Finding Multi-constrained Paths”, Technical
report, UIUCDCS-R-97-2026, CS Department, UIUC, October 1997.
1998 Publications, Theses and Talks:
[Deng98] Z. Deng, J.W.S. Liu, L. Zhang, A. Frei, M. Seri, “An Open Environment for
Real-Time Applications”, Real-Time Systems Journal, 2002.
[Hull98] D. Hull, “An End-to-end Imprecise Computation Environment”, PhD Thesis,
December 1998, University of Illinois at Urbana-Champaign.
[Frei98] A. Frei, “Scheduling of DPC and LPC to Enhance Timing Preditability of
Windows NT”, Master Thesis, December 1998, University of Illinois at Urbana-
Champaign.
[Li98a] B. Li, K. Nahrstedt, “An Open Task Control Model for Quality of Service
Adaptation”, 14th International Conference on Advanced Science and Technology
(ICAST 98), April 1998, Chicago, IL, pp. 29-41
[Chen98a] S. Chen, K.Nahrstedt, “Max-min Fair Routing in Connection-Oriented
Networks”, Euro-Parallel and Distributed Systems Conference, July 1998, Vienna,
Austria.
[Chen98b] S. Chen, K. Nahrstedt, “Distributed Routing with Imprecise State
Information”, IEEE 7th International Conference on Computer Communication and
Networks (ICCCN), October 1998, Lafayette, LU.
[Chen98c] S. Chen, K. Nahrstedt, “Distributed Quality-of-Service Routing in High-Speed
Networks Based on Selective Probing”, IEEE 23rd Annual Conference on Local
Computer Networks (LCN), October 1998, Boston, MA, pp. 80-89.
[Chen98d] S. Chen, K. Nahrstedt, “Distributed Quality of Service Routing with
Imprecise State Information for Next Generation Internet”, NASA NREN QoS
Workshop, August 1998, NASA, CA.

20

[Li98b] B. Li, K. Nahrstedt, “A Control-Theoretical Model for Quality of Service
Adaptation”, IFIP International Workshop on QoS (IWQoS), May 1998, Napa, CA.
[Li98c] B. Li, K. Nahrstedt, “Adaptive QoS Middleware Framework for Complex
Flexible Applications”, NASA NREN QoS Workshop, August 1998, NASA, CA.
[Li98d] B. Li, D. Xu, K. Nahrstedt, J.W.S. Liu, “End-to-end Support for Adaptive
Applications Over the Internet”, SPIE Symposium on Voice, Video and Data
Communications, November 1998, Boston, MA.
[Xu98] D. Xu, B. Li, J.W. Liu, K.Nahrstedt, “Providing Seamless QoS for Multimedia
Multicast in Real-Time Packet Cellular Networks”, SPIE Symposium on Voice, Video
and Data Communications, November 1998, Boston, MA.
[Chen98e] S. Chen, K. Nahrstedt, “An Overview of Quality of Service Routing for the
Next Generation High-Speed Networks: Problems and Solutions”, IEEE Network,
Special Issue on Transmission and Distribution of Digital Video, November/December
1998, Vol.12, No.6, pp. 64-79 (received from IEEE Communications Society Best
Tutorial Award).
[Chen98f] S. Chen, K. Nahrstedt, “On Finding Multi-constrained Paths”, IEEE
International Conference on Communication (ICC), 1998, Atlanta, GA.
1999 Publications, Theses, and Talks:
[Deng99a] Z. Deng, J. W.-S. Liu, L.Y. Zhang, M.. Seri, and A. Frei, “An open
environment for real-time applications,” Real-Time Systems Journal, 16(2):155-186,
May 1999.
[Gardner99] M. K. Gardner and J. W. S. Liu, "Performance of Algorithms for Scheduling
Real-Time Systems with Overrun and Overload," In Proceedings of the Eleventh
Euromicro Conference on Real-Time Systems, 9-11 June 1999, University of York,
York, England.
[Zhang99a] L.Y. Zhang, Z. Deng, I. Philp, and J. W. S. Liu, “A hierarchical scheme for
scheduling messages in open real-time environment”, In Proceedings of IEEE Symposium on
Real-Time Systems, December 1999.
[Shankar99] M. Shankar, M. DeMiguel, J.W.S. Liu, “An Application Domain-
Independent QoS Management Architecture” IEEE Symposium on Real-Time
Applications and Systems (RTAS), June 1999pp. 176-189.
[Zhang99b] L. Zhang, J.W.S. Liu, “An Open Real-Time Environment on PC Clusters”,
11th Euromicro Workshop on Real-Time Systems, Work in Progress Section, June 1999.
[Liu99a] J.W.S. Liu, “EPIQ Open Environment for Real-Time Applications”, Invited
Talk at Sony Distributed Systems Lab, San Jose, CA, March 1999; HP Research
Laboratories, Palo Alto, CA, March 1999; Microsoft, Seattle, WA, April 1999.
[Chen99a] S. Chen, K. Nahrstedt, “Routing by Distributed Recursive Computation and
Information”, IEEE International Performance, Communication and Control Conference
(IPCCC), February 1999, pp. 393-403.
[Chen99b] S. Chen, “Routing Support for Providing Guaranteed End-to-End Quality of
Service”, April 1999, PhD Thesis, University of Illinois at Urbana-Champaign.
[Nahrstedt98] K. Nahrstedt, “Coexistence of QoS and Best Effort Flows: Routing and
Scheduling Analysis”, Invited talk to Ohio State University, December 1998
[Nahrstedt99a], K. Nahrstedt, “Adaptive QoS Framework and its Application to Visual
Tracking”, Invited Talk, Purdue University, March 1999; Polytechnic University, New
York, March 1999, University of California, Irvine, January 1999.

21

[Li99a] B. Li, K. Nahrstedt, “Optimal State Prediction for Feedback-Based QoS
Adaptations”, IFIP/IEEE International Workshop on Quality of Service (IWQoS), June
1999, London, England.
[Li99b] B. Li, K. Nahrstedt, “Dynamic Reconfiguration for Complex Multimedia
Applications”, IEEE International Conference on Multimedia Computing and Systems
(ICMCS), June 1999, Florence, Italy.
[Chen99c] S. Chen, K. Nahrstedt, “Hierarchical Scheduling for Multiple Classes of
Applications in Connection-Oriented Integrated Service Networks”, IEEE International
Conference on Multimedia Computing and Systems (ICMCS), June 1999, Florence, Italy.
[Chawla99a] M. Chawla, Y. Zhou, K. Nahrstedt, “QoS Translation and End-to-End
Signaling Protocols for RSVP over CBR/ATM”, OPNETWORK’99, August 1999,
Washington, DC.
[Chen99d] S. Chen, K. Nahrstedt, “Distributed Quality of Service Routing in Ad-Hoc
Networks”, IEEE Journal on Selected Areas in Communication (JSAC), Special Issue on
Ad-Hoc Networks, Vol. 17, No.8, August 1999, pp. 1-18.
[Chawla99b] M. Chawla, “Design, Implementation and Evaluation of an Edge Device
Architecture”, August 1999, Master Thesis, University of Illinois at Urbana-Champaign.
[Lewites99] S. Lewites, “QuoSAR: Implementation Testbed for QoS Routing”, June
1999, Master Thesis, University of Illinois at Urbana-Champaign.
[Li99c] B. Li, K. Nahrstedt, “A Control-based Middleware Framework for Quality of
Service Adaptation”, IEEE JSAC, Vol. 17, No. 9, September 9, pp. 1632-1650. (received
IEEE Communications Society Leonard C. Abraham Paper Award).
[Nahrstedt99b] K. Nahrstedt, D. Wichadakul, “QoS-aware Active Gateway for
Multimedia Communication”, 6th International Workshop on Interactive Distributed
Multimedia Systems and Telecommunication Services (IDMS), October 1999, Toulouse,
France.
2000 Publications, Theses and Talks:
[Shih00] Ch. Shih, J. Liu, J. Qian, M. Jonnalagadda, and J. Li, “Open Real-time Linux,” 2nd
Real-time Linux Workshop, Orlando, Florida, 2000.
[Chen00a] S. Chen, K. Nahrstedt, Y. Shavitt, “A QoS-aware Multicast Routing
Protocol”, IEEE INFOCOM, March 2000, Israel.
[Li00a] B. Li, W. Jeon, B. Kalter, K. Nahrstedt, J. Seo, “Adaptive Middleware
Architecture for a Distributed Omni-directional Visual Tracking System”, SPIE
Multimedia Computing and Networking Conference (MMCN) January 2000, San Jose,
CA.
[Nahrstedt00a] K. Nahrstedt, “QoS Compilation and Runtime Systems”, Invited Talk to
Purdue University, November 2000.
[Nahrstedt00b] K. Nahrstedt, “Adaptive QoS Framework and its Application to Visual
Tracking”, Invited talk to Technical University, Karlsruhe, Germany, April 2000; ETL
Laboratory, Tsukuda, Japan, March 2000.
[Nahrstedt00c] K. Nahrstedt, “Control-based Adaptive QoS Framework”, Invited Talk to
Tokyo University of Engineering, Tokyo, Japan, March 2000.
[Xu00a] D. Xu, D. Wichadakul, K. Nahrstedt, “Resource-aware Middleware for Active
and Configurable Distributed Services”, Active Middleware Services, Eds. Salim Hariri,
Craig. A. Lee, Cauligi S. Raghavendra, Kluwer Academic Publishers, 2000, pp. 167-176.
[Li00b] B. Li, K. Nahrstedt, “QualProbes: Middleware QoS Profiling Services for
Configuring Adaptive Applications”, in Lecture Notes in Computer Science, ACM-

22

Springer, Vol. 1795, Eds. J. Sventek, G. Coulson; Also in proceedings of IFIP
International Conference on Distributed Systems Platforms and Open Distributed
Processing (Middleware 2000), April 2000.
[Chen00b] S. Chen, K. Nahrstedt, Y. Shavitt, “A QoS-Aware Multicast Routing
Protocol”, IEEE JSAC, Vol.18, No. 12, December 2000.
[Lui00a] K. Lui, K. Nahrstedt, S. Chen, “Hierarchical QoS Routing in Delay-Bandwidth
Sensitive Networks”, IEEE International Conference on Local Computer Networks
(LCN), November 2000.
[Lui00b] K. Lui, K. Nahrstedt, “Topology Aggregation and Routing in Bandwidth-Delay
Sensitive Networks”, IEEE Globecom’2000, November 2000.
[Talwar00] V. Talwar, K. Nahrstedt, “Securing RSVP for Multimedia Applications”,
ACM Multimedia Security Workshop, November 2000, Los Angeles, CA.
[Nahrstedt00d] K. Nahrstedt, D. Wichadakul, D. Xu, “ Distributed QoS Compilation and
Runtime Instantiation”, IFIP/IEEE International Workshop on QoS (IWQoS), June 2000,
Pittsburgh, PA.
[Xu00b] D. Xu, D. Wichadakul, K. Nahrstedt, “QoS and Contention-Aware Multi-
Resource Reservation”, IEEE International Conference on High-Performance Distributed
Computing (HPDC), August 2000, Pisstburgh, PA, pp. 3-10.
[Kalter00a] W. Kalter, B. Li, W. Jeon, K. Nahrstedt, J. Seo, “A Gateway-Assisted
Approach Towards QoS Adaptations”, IEEE International Conference on Multimedia and
Expo (ICME), July 2000, New York, NY, pp. 855-858.
[Xu00c] D. Xu, D. Wichadakul, K. Nahrstedt, “Resource-Aware Configuration of
Ubiquitous Multimedia Services”, IEEE International Conference on Multimedia and
Expo (ICME), July 2000, New York, NY, pp. 851-854.
[Xu00d] D. Xu, D. Wichadakul, K. Nahrstedt, “Multimedia Service Configuration and
Reservation in Heterogeneous Environments”, IEEE International Conference on
Distributed Systems Computing, April 2000, Taiwan, pp. 512-519.
[Li00c] B. Li, “Adaptive QoS Framework and Its Application to Visual Tracking”, PhD
Thesis, May 2000, University of Illinois at Urbana-Champaign.
[Kalter00b] W. Kalter, “Design, Implementation and Experimentation of a Gateway
Architecture for End-to-End QoS Adaptation”, Master Thesis, August 2000, University
of Illinois at Urbana-Champaign.
[Viswan00] A. Viswanathan, “Design and Evaluation of a CPU-aware Communication
Broker for RSVP-based Networks”, Master Thesis, May 2000, University of Illinois at
Urbana-Champaign.
[Gu00] X. Gu, “Visual QoS Programming Environment for Multimedia Applications”,
Master Thesis, December 2000, University of Illinois at Urbana-Champaign (received
Best MS 2001 Kuck Award).
2001 Publications, Theses and Talks:
[Talwar01a] V. Talwar, S. Nath, K. Nahrstedt, “RSVP-SQoS: A Secure RSVP Protocol”,
IEEE International Conference on Multimedia and Expo (ICME), August 2001, Tokyo,
Japan, electronic proceedings.
[Cui01] Y. Cui, D. Xu, K. Nahrstedt, “SMART: A Scalable Middleware Solution for
Ubiquitous Multimedia Service Delivery”, IEEE International Conference on Multimedia
and Expo (ICME), August 2001, Tokyo, Japan, electronic proceedings.

23

[Gu01a] X. Gu, K. Nahrstedt, “Visual QoS Programming Environment for Ubiquitous
Multimedia Services”, IEEE International Conference on Multimedia and Expo (ICME),
August 2001, Tokyo, Japan, electronic proceedings.
[Li01] B. Li, D. Xu, K. Nahrstedt, “Towards Integrated Runtime Solution in QoS-aware
Middleware”, ACM Multimedia Middleware Workshop, October 2001, Ottawa, Canada.
[Gu01b] X. Gu, K. Nahrstedt, “An Event-Driven, User-Centric, QoS-aware Middleware
Framework for Ubiquitous Multimedia Applications”, ACM Multimedia Middleware
Workshop, October 2001, Ottawa, Canada.
[Yuan01] W. Yuan, K. Nahrstedt, X. Gu, “Coordinating Energy-Aware Adaptation of
Multimedia Applications and Hardware Resource, “ACM Multimedia Middleware
Workshop, October 2001, Ottawa, Canada.
[Nahrstedt01] K. Nahrstedt, D. Xu, D. Wichadakul, B. Li, “QoS-aware Middleware for
Ubiquitous and Heterogeneous Environments”, IEEE Communication Magazine, Vol. 39,
No. 11, November 2001, pp. 140-148.
[Wichadak01] D. Wichadakul, K. Nahrstedt, X. Gu, D. Xu, “2KQ+: An Integrated
Approach of QoS Compilation and Reconfigurable, Component-based Run-time
Middleware for Unified QoS Management Framework”, IFIP International Conference
on Distributed Systems Platforms and Open Distributed Processing (Middleware 2001),
November 2001, Heidelberg, Germany, pp. 373-394.
[Xu01] D. Xu, “A QoS-aware Framework for Ubiquitous Multimedia Service Provision”,
PhD Thesis, December 2001, University of Illinois at Urbana-Champaign.
 [Talwar01b] V. Talwar, Master Thesis, May 2001, University of Illinois at Urbana-
Champaign (received Best MS 2002 Kuck Award).
2002 Publications, Theses and Talks:
[Gu02a] X. Gu, K. Nahrstedt, “An XML-based Quality of Service Enabling Language for
Web”, Journal on Visual Languages and Computing, Academic Press, Special Issue on
Multimedia Languages for the Web, Vol. 13, No. 1. February 2002, pp.61-95.
[Yuan02] W. Yuan, K. Nahrstedt, “Integration of Dynamic Voltage Scaling and Soft-
Real-Time Scheduling for Open Mobile Systems”, Workshop on Network and Operating
System Support for Digital Audio and Video (NOSSDAV), February, 2002.
[Xu02a] D. Xu, K. Nahrstedt, D. Wichadakul, “MeGaDiP: A Wider Area Media Gateway
Discovery Protocol”, Information Science Journal, Elsevier Science Publisher, Vol. 141,
No. 1-2, March 2002, pp. 37-59.
[Xu02b] D. Xu, K. Nahrstedt, “Finding Service Paths in a Media Service Proxy
Network”, SPIE International Conference on Multimedia Computing and Networking
(MMCN), Electronic Imaging Symposium, January 2002, San Jose, CA, pp. 171-185.
[Wichadak02] D. Wichadakul, K. Nahrstedt, “A Translation System for Enabling
Flexible and Efficient Deployment of QoS-aware Applications in Ubiquitous
Environments”, IFIP/ACM 1st International Working Conference on Component
Deployment, June 2002, Berlin, Germany.
[Gu02b] X. Gu, K. Nahrstedt, “Dynamic QoS-aware Multimedia Service Configuration
in Ubiquitous Computing Environments”, IEEE International Conference on Distributed
Computing Systems (ICDCS), July 2002, Vienna, Austria.
[Gu02c] X. Gu, K. Nahrstedt, “A Scalable QoS-aware Service Aggregation Model for
Peer-to-peer Computing Grids”, IEEE International Conference on High-Performance
Distributed Computing (HPDC), July 2002, Edinburgh, Scotland.

24

[Lui02a] K. Lui, K. Nahrstedt, S. Chen, “Routing with Topology Aggregation in
Bandwidth-Delay Sensitive Networks”, accepted to IEEE/ACM Transactions on
Networking, 2002.
[Lui02b] K. Lui, “STAR Bridge Protocol”, PhD Thesis, May 2002, University of Illinois
at Urbana-Champaign.
[Gupta02] G. Gupta, “Distributed Dynamic Soft-Real-Time Scheduling for Focus-based
Multimedia Applications”, Master Thesis, May 2002, University of Illinois at Urbana-
Champaign.
[Prabhu02] R. Prabhu, “Software Framework for Secure Distributed Multimedia
Applications”, Master Thesis, May 2002, University of Illinois at Urbana-Champaign.

25

List(s) of Symbols, Abbreviations and Acronyms

ATM Asynchronous Transfer Mode
CAN Control Area Network
CBR Constant Bit Rate
DSRT Dynamic Soft-Real-Time Scheduling
EDF Earliest Deadline First
FBS Feedback-based Synchronization
FM Fast Messages
HCF Hybrid Coordination Function
IP Internet Protocol
ISP Internet Service Provider
PC Personal Computer
PCPT Periodic Constant Processing Time
PVPT Periodic Variable Processing Time
QoS Quality of Service
RR Round Robin
RSVP Resource Reservation Protocol
S-CFB Scheduled Contention Free Burst
WRR Weighted Round Robin

